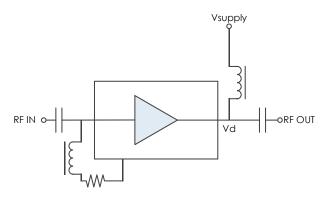
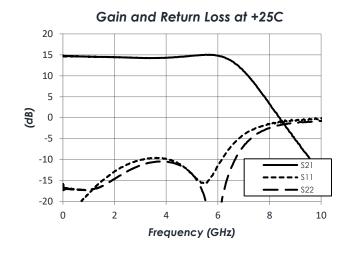
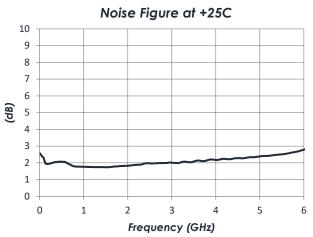


Description


AM1116 is a high dynamic range gain block covering the 20 MHz to 6 GHz frequency range. The device exhibits flat gain, low noise figure and high third order intercept performance while also providing excellent gain stability over the operating temperature range. With internal 50 ohm matching and packaged in a 3mm QFN, the AM1116 represents a compact total PCB footprint.


Features


- 15 dB Gain
- 2 dB Noise Figure
- +17 dBm P1dB
- +31 dBm OIP3
- +3.3V Operation
- 168 mW Power Consumption
- 3mm QFN, or 1.3mm x 2mm DFN
- -40C to +85C Operation
- Unconditionally Stable

Functional Diagram

Characteristic Performance

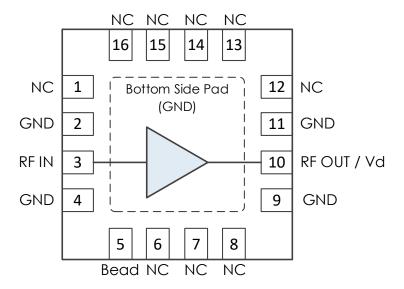
To obtain price, delivery, or to place an order contact sales@atlantamicro.com

AM1116 - Amplifier 20 MHz to 6 GHz Gain Block

Table of Contents

Description	1
Features	1
Functional Diagram	1
Characteristic Performance	1
Revision History	2
Pin Layout and Definitions	3
Pin Layout and Definitions (continued)	4
Specifications	5
Absolute Maximum Ratings	5
Handling Information	5

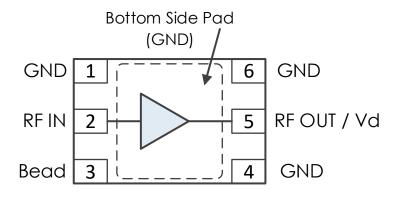
C	Component Compliance Information	11
R	elated Parts	10
E	valuation PC Board	10
Ty	ypical Application	. 9
	Typical Performance	. 7
	RF Performance	. 6
	DC Electrical Characteristics	. 6
	Thermal Information	. 5
	Recommended Operating Conditions	. 5


Revision History

Date	Revision Number	Notes
October 25, 2021	1	Initial Release
December 16, 2021	2	Updated format, added DFN package

Pin Layout and Definitions

AM1116-1: 3mm QFN


Pin Number	Pin Name	Pin Function	
1	NC	Not Connected*	
2	GND	Ground - Common	
3	RF IN	RF Input – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required	
4	GND	Ground - Common	
5	Bead	Connect to RF IN through external ferrite bead or large inductor in series with a 32.4-ohm resistor.	
6-8	NC	Not Connected*	
9	GND	Ground - Common	
10	RF OUT / Vd	RF Output and DC Power Input – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required	
11	GND	Ground - Common	
12-16	NC	Not Connected*	

^{*}NC Pins may be grounded or left open

Pin Layout and Definitions (continued)

AM1116-2: 2mm DFN

Pin Number	Pin Name	Pin Function
1	GND	Ground - Common
2	RF In	RF Input – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required
3	Bead	Connect to RF IN through external ferrite bead or large inductor in series with a 32.4-ohm resistor.
4	GND	Ground - Common
5	RF Out	RF Output – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required
6	GND	Ground – Common

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+3.5 V
RF Input Power		+20 dBm
Operating Junction Temperature	-40 C	+150 C
Storage Temperature Range	-55 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Moisture Sensitivity Level (-1 package)	MSL 1	
(-2 package)	MSL 3	
ESD classification (HBM, survivable)	Class 1a	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage	+3.0 V	+3.3 V	+3.5 V
Operating Case Temperature	-40 C		+85 C
Operating Junction Temperature	-40 C		+125 C

Thermal Information

Junction to Case Thermal Resistance (θ _{JC})	234 C/W
Nominal junction temperature at +85degC	+125 C
Channel Temperature to maintain 1 million hour MTTF	+175 C

AM1116 - Amplifier

20 MHz to 6 GHz Gain Block

DC Electrical Characteristics

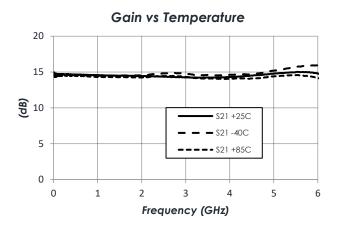
(T = 25 °C unless otherwise specified)

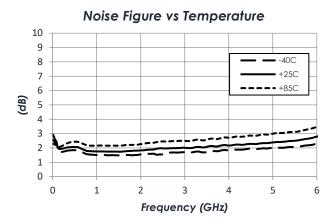
Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage			+3.3 V	
DC Supply Current	VDD = +3.3 V		51 mA	
Power Dissipated	VDD = +3.3 V		168 mW	

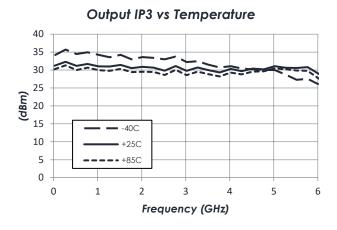
RF Performance

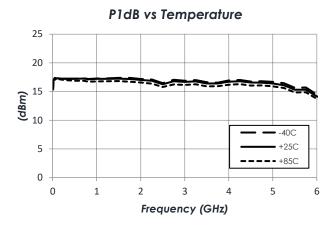
(T = 25 °C unless otherwise specified)

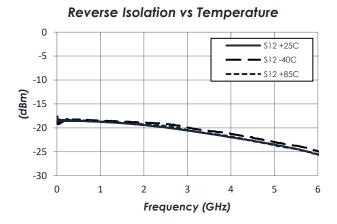
Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		0.02 GHz		6.0 GHz
Gain	f = 3 GHz		14.5 dB	
Return Loss	f = 3 GHz		-10 dB	
Output IP2	f = 3 GHz, Sum Spur		+37 dBm	
	f = 3 GHz, Difference Spur		+40 dBm	
Output IP3	f = 3 GHz		+30 dBm	
Output P1dB	f = 3 GHz		+17 dBm	
Noise Figure	f = 3 GHz		2.0 dB	

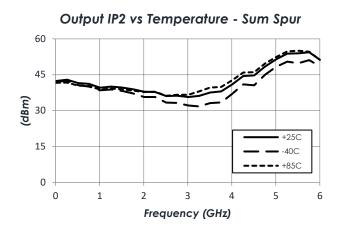

Notes:

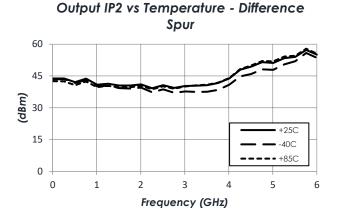

- 1. OIP3 measured with 10 MHz tone spacing
- 2. OIP2 characterized with sum and difference measurements
 - a. OIP2 sum measured with 10 MHz tone spacing. IM2 measured at $f_1 + f_2$
 - b. OIP2 difference measured with tones at f_1 and $f_2=2f_1+10 MHz$. IM2 measured at f_1-f_2

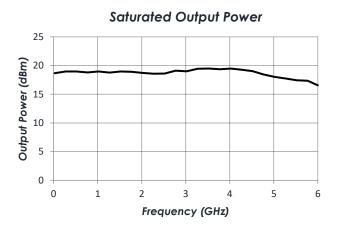


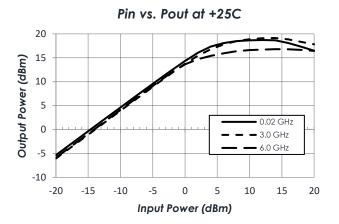

Typical Performance


(VDD=3.3V, T = 25 °C unless otherwise specified)

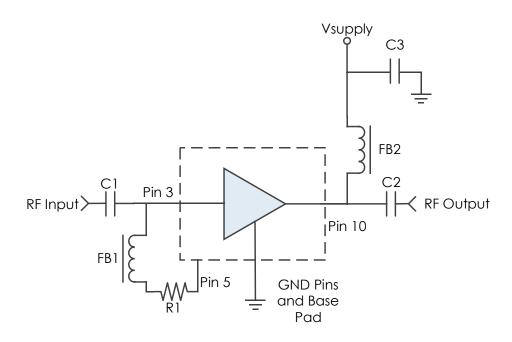






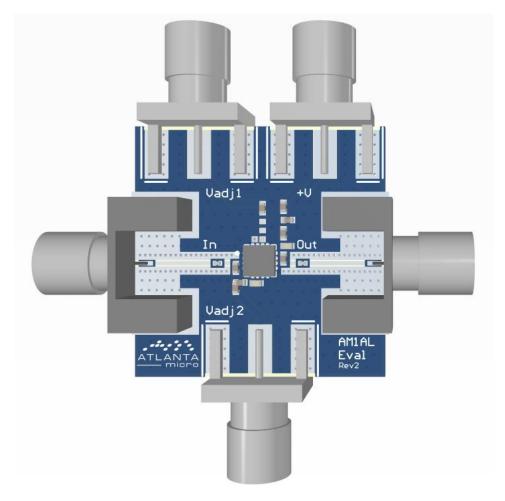

Typical Performance (continued)

(VDD=3.3V, T = 25 °C unless otherwise specified)



Typical Application

Recommended Component List (or equivalent):


Part	Value	Part Number	Manufacturer
C1, C2	0.1uF	0201BB104KW160	Passives Plus
C3	0.1uF	GRM155R71C104KA88	Murata
FB1, FB2	-	MMZ1005A222E	TDK
R1	32.4 Ω	RC0402FR-0732R4L	Yageo

Notes:

- 1. DC blocking capacitors should be high performance, low-loss, broadband capacitors for optimum performance.
- 2. R1 is required for optimum performance.

Evaluation PC Board

Related Parts

Part Numbe	Description

AM1016	20 MHz	to 6 GHz	Low Noise Gain Block, +3.3 V
AM1018	20 MHz	to 6 GHz	Low Noise Gain Block, +3.3 V
AM1127	20 MHz	to 6 GHz	Driver Amplifier, +6 V

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.